Survival Data Analysis with Time-Dependent Covariates Using Generalized Additive Models

نویسندگان

  • Masaaki Tsujitani
  • Yusuke Tanaka
  • Masato Sakon
چکیده

We discuss a flexible method for modeling survival data using penalized smoothing splines when the values of covariates change for the duration of the study. The Cox proportional hazards model has been widely used for the analysis of treatment and prognostic effects with censored survival data. However, a number of theoretical problems with respect to the baseline survival function remain unsolved. We use the generalized additive models (GAMs) with B splines to estimate the survival function and select the optimum smoothing parameters based on a variant multifold cross-validation (CV) method. The methods are compared with the generalized cross-validation (GCV) method using data from a long-term study of patients with primary biliary cirrhosis (PBC).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد مدل توأم بقا و داده های طولی در بیماران دیالیز صفاقی

Background and Aim: In many medical studies along with longitudinal data, which are repeatedly measured during a certain time period, survival data are also recorded. In these situations, using models such as, mixed effects models or GEE method for longitudinal data and Cox model for survival data, are not appropriate because some necessary assumptions are not met. Instead, the joint models hav...

متن کامل

Analysis of Heart Transplant Survival Data Using Generalized Additive Models

The Stanford Heart Transplant data were collected to model survival in patients using penalized smoothing splines for covariates whose values change over the course of the study. The basic idea of the present study is to use a logistic regression model and a generalized additive model with B-splines to estimate the survival function. We model survival time as a function of patient covariates an...

متن کامل

مقایسه پارامترها و برازش مدل‌های با متغیرهای مستقل وابسته و غیر وابسته به زمان در تحلیل بقا

  Background & Objectives : Management of time-dependent variables is the advantages of survival analysis. This study compares time-dependent and -independent variables in survival analysis in culling of dairy cows.   Methods: In this historical cohort, 7067 dairy cows in the Province of Tehran were recruited. Cows were followed to the next calving or culling. Data on the occurrence of healt...

متن کامل

Dynamic path analysis-a new approach to analyzing time-dependent covariates.

In this article we introduce a general approach to dynamic path analysis. This is an extension of classical path analysis to the situation where variables may be time-dependent and where the outcome of main interest is a stochastic process. In particular we will focus on the survival and event history analysis setting where the main outcome is a counting process. Our approach will be especially...

متن کامل

Estimate of influenza cases using generalized linear, additive and mixed models.

We investigated the relationship between reported cases of influenza in Catalonia (Spain). Covariates analyzed were: population, age, data of report of influenza, and health region during 2010-2014 using data obtained from the SISAP program (Institut Catala de la Salut - Generalitat of Catalonia). Reported cases were related with the study of covariates using a descriptive analysis. Generalized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012